G-quadruplex formation in human telomeric (TTAGGG)4 sequence with complementary strand in close vicinity under molecularly crowded condition

نویسندگان

  • Zhong-yuan Kan
  • Yi Lin
  • Feng Wang
  • Xin-ying Zhuang
  • Yong Zhao
  • Dai-wen Pang
  • Yu-hua Hao
  • Zheng Tan
چکیده

Chromosomes in vertebrates are protected at both ends by telomere DNA composed of tandem (TTAGGG)n repeats. DNA replication produces a blunt-ended leading strand telomere and a lagging strand telomere carrying a single-stranded G-rich overhang at its end. The G-rich strand can form G-quadruplex structure in the presence of K+ or Na+. At present, it is not clear whether quadruplex can form in the double-stranded telomere region where the two complementary strands are constrained in close vicinity and quadruplex formation, if possible, has to compete with the formation of the conventional Watson-Crick duplex. In this work, we studied quadruplex formation in oligonucleotides and double-stranded DNA containing both the G- and C-rich sequences to better mimic the in vivo situation. Under such competitive condition only duplex was observed in dilute solution containing physiological concentration of K+. However, quadruplex could preferentially form and dominate over duplex structure under molecular crowding condition created by PEG as a result of significant quadruplex stabilization and duplex destabilization. This observation suggests quadruplex may potentially form or be induced at the blunt end of a telomere, which may present a possible alternative form of structures at telomere ends.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural and mechanical properties of individual human telomeric G-quadruplexes in molecularly crowded solutions

Recent experiments provided controversial observations that either parallel or non-parallel G-quadruplex exists in molecularly crowded buffers that mimic cellular environment. Here, we used laser tweezers to mechanically unfold structures in a human telomeric DNA fragment, 5'-(TTAGGG)4TTA, along three different trajectories. After the end-to-end distance of each unfolding geometry was measured,...

متن کامل

The effect of the TRF2 N-terminal and TRFH regions on telomeric G-quadruplex structures

The sequence of human telomeric DNA consists of tandem repeats of 5'-d(TTAGGG)-3'. This guanine-rich DNA can form G-quadruplex secondary structures which may affect telomere maintenance. A current model for telomere protection by the telomere-binding protein, TRF2, involves the formation of a t-loop which is stabilized by a strand invasion-like reaction. This type of reaction may be affected by...

متن کامل

Recognition and Binding of Human Telomeric G-Quadruplex DNA by Unfolding Protein 1

The specific recognition by proteins of G-quadruplex structures provides evidence of a functional role for in vivo G-quadruplex structures. As previously reported, the ribonucleoprotein, hnRNP Al, and it is proteolytic derivative, unwinding protein 1 (UP1), bind to and destabilize G-quadruplex structures formed by the human telomeric repeat d(TTAGGG)n. UP1 has been proposed to be involved in th...

متن کامل

Human telomeric DNA: G-quadruplex, i-motif and Watson-Crick double helix.

Human telomeric DNA composed of (TTAGGG/CCCTAA)n repeats may form a classical Watson-Crick double helix. Each individual strand is also prone to quadruplex formation: the G-rich strand may adopt a G-quadruplex conformation involving G-quartets whereas the C-rich strand may fold into an i-motif based on intercalated C*C+ base pairs. Using an equimolar mixture of the telomeric oligonucleotides d[...

متن کامل

Human telomeric DNA forms parallel-stranded intramolecular G-quadruplex in K+ solution under molecular crowding condition.

The G-rich strand of human telomeric DNA can fold into a four-stranded structure called G-quadruplex and inhibit telomerase activity that is expressed in 85-90% tumor cells. For this reason, telomere quadruplex is emerging as a potential therapeutic target for cancer. Information on the structure of the quadruplex in the physiological environment is important for structure-based drug design tar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2007